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Abstract—Deployed high-latency anonymous communication
systems conceal communication patterns using pool mixes as
building blocks. These mixes are known to be vulnerable to
Disclosure Attacks that uncover persistent relationships between
users. In this paper we study the performance of the Least
Squares Disclosure Attack (LSDA), an approach to disclosure
rooted in Maximum Likelihood parameter estimation that recov-
ers user profiles with greater accuracy than previous work. We
derive analytical expressions that characterize the profiling error
of the LSDA with respect to the system parameters for a threshold
binomial pool mix and validate them empirically. Moreover, we
show that our approach is easily adaptable to attack diverse pool
mixing strategies.

I. INTRODUCTION

High-latency anonymous communication systems aim at
obfuscating communication patterns that can be exploited
to infer sensitive information about users even when the
content of messages is kept confidential. A common building
block for these systems are mixes, relaying routers that hide
the correspondence between their inputs and outputs [1]. In
particular, deployed systems [2], [3] make use of pool mixes.
Each round these mixes collects a number of messages, change
their appearance cryptographically, and place them on a pool
from which they are probabilistically chosen to leave the mix.
Otherwise, they stay in the pool and get mixed with messages
arriving in subsequent rounds.

It has been demonstrated that an adversary observing a mix-
based system long enough can uncover persistent communica-
tion patterns [4] by launching a disclosure attack [5], [6], [7],
[8]. This attack finds a user likely set of friends by intersecting
the recipient anonymity sets [9] of this user’s messages. These
attacks have mostly been evaluated against threshold mixes
in which, as opposed to pool mixes, mixing occurs only
between messages in a given round and hence are easy to
model and analyze. To the best of our knowledge, only the
Statistical Disclosure Attack has been extended to attack pool
mixes [10]. This is because the probabilistic nature of these
mixing algorithms hampers the identification of sender and
receiver anonymity sets, and hence hinders the adaptation of
graph-theory based attacks [5], [7], [8] to pool-mix scenarios.

In this paper we study the applicability of the Least Squares
Disclosure Attack (LSDA) [11] to pool mixes. This attack
models profiling as a Least Squares problem, and yields
profiles that minimize the error between the actual number of

output messages and a prediction based on the input messages.
We first revisit the LSDA extension to threshold binomial pool
mixes proposed in [12]. We confirm that the derived analytic
results that describe evolution of the estimation error with the
parameters of the system closely model reality, and that the
approach outperforms previous work. We finally show that
the Least Squares can easily accommodate various pool mix
strategies.

The rest of the paper is organized as follows: in the next
section we describe our system and adversarial models. We
introduce the Least Squares approach to disclosure applied to
threshold binomial pool mixes in Sect. III and we validate
the equations that characterize the LSDA’s error in Sect. IV,
further demonstrating its efficacy against different pool mix
strategies. Finally, we conclude in Sect. V.

II. NOTATION AND SYSTEM MODEL

Throughout the text we will use capital letters to denote
random variables and lowercase letters to denote realizations.
Vectors will be represented using boldface characters; thus,
x = [x1, · · · , xN ]T denotes a realization of random vec-
tor X = [X1, · · · , XN ]T . Matrices will be represented by
boldface capital characters; whether they contain random or
specific values will be clear from the context.

1) System model: We study a system in which a population
of Nusers users, designated by an index i ∈ {1, . . . , Nusers},
communicate through an high-latency anonymous communi-
cation channel, that we model as a pool mix. In this mix
messages are placed on a pool with messages from previous
rounds upon arrival. Then they leave the mix with a certain
probability, or otherwise they stay in the pool and are mixed
with messages arriving in subsequent rounds. The appearance
of messages is changed cryptographically by the mix to avoid
bitwise linkability between inputs and outputs.

We model with the random variable Xr
i , respectively Y rj ,

the number of messages that the ith (jth) user sends (receives)
in round r; and denote as xri (yrj ) the actual number of
messages i (j) sends (receives) in that round. Let xr and
yr denote column vectors that contain as elements the num-
ber of messages sent or received by all users in round r:
xr = [xr1, · · · , xrNusers

]T , and yr = [yr1, · · · , yrNusers
]T .

Users pick their messages recipients according to their
sender profile qi

.
= [p1,i, p2,i, · · · , pNusers,i]

T ; being pj,i the



probability that user i chooses user j as receiver of a message.
We consider that users have f friends to whom they send with
probability pj,i (pj,i = 0 when i is not a friend of j). We
call unnormalized receiver profile of user j the column vector
pj

.
= [pj,1, pj,2, · · · , pj,Nusers ]

T containing the probabilities of
the different senders choosing the jth user as receiver. This
vector can be related to the receiver profile of user j through
a simple normalization. We finally construct the vector p by
stacking the unnormalized receiver profiles of all users, i.e.,
pT

.
= [pT1 , · · · ,pTNusers

].
2) Adversary model: We consider a global passive adver-

sary that knows all the parameters of the mix such as the
mixing algorithm and the firing probability. As we focus on
quantifying the impact of the information leaked by the mixing
protocols on anonymity we assume that the cryptographic
transformation performed during the mixing is perfect and thus
the adversary cannot gain any information from studying the
content of the messages.

The adversary monitors the system during ρ rounds observ-
ing the identity of the senders and receivers that communicate
through the mix. Her goal is to uncover communication
patterns from the observed flow of messages. Formally, given
the observation xr = {xri } and yr = {yrj}, for i, j =
1, . . . , Nusers, and r = 1, . . . , ρ, the adversary’s goal is to
obtain estimates p̂j,i as close as possible to the probabilities
pj,i, which in turn allow for the recovery of the users’ sending
and receiver profiles. Fig. 1 illustrates the construction of the
adversary’s observation for a pool mix whose mixing algo-
rithm we abstract, for the sake of simplicity, as simply firing
messages in the pool with probability α. In round r, senders
i = 4, 8, 6 send messages to receivers j = 1, 2, 3, chosen
with probability pj,i according to their sender profiles. The
messages are mixed in the pool with messages for receivers
j = 5, 7 left from previous rounds. The mix chooses messages
for receivers j = 1, 5 to be output; and messages for j = 2, 3, 7
stay in the pool until round r+1. Hence, in round r, the adver-
sary’s observation consists of xr = [0, 0, 0, 1, 0, 1, 0, 1, 0, 0]T

and yr = [1, 0, 0, 0, 1, 0, 0, 0, 0, 0]T . The same process is
followed to construct xr+1, and yr+1.

We summarize the notation introduced in this section in
Table II-2.

III. A LEAST SQUARES APPROACH TO DISCLOSURE
ATTACKS ON THRESHOLD BINOMIAL POOL MIXES

In this section we discuss how to estimate the unnormalized
receiver profiles from the observations xr, yr, r = 1, · · · , ρ,
focusing our analysis on a threshold binomial pool mix. This
mix fires when it collects t messages (where t is called the
threshold), having each message in the pool a probability α of
being fired and (1 − α) of staying. We remark that once the
unnormalized receiver profiles are known, the sender profiles
can be straightforwardly obtained. To distinguish between the
number of messages from the ith sender that enter and leave
the mix in round r (note that some messages may stay in
the pool) we will use vectors xr and Xr

s, respectively, where
the vector xr is observable while Xr

s is not. We let UT .
=
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Fig. 1. System model.

TABLE I
SUMMARY OF NOTATION

Symbol Meaning
Nusers Number of users, denoted by i = {1, · · · , Nusers}
f Number of friends of each sender i
α Firing probability of the pool mix
pj,i Probability that user i sends a message to user j
qi User i’s sender profile
pj User j’s unnormalized receiver profile
p Vector of unnormalized receiver profiles

ρ Number of rounds observed by the adversary
xri (yrj ) Number of messages i (j) sends (receives) in round r
xr (yr) Column vector containing elements xri (yrj )
p̂j,i Adversary’s estimation of pj,i
q̂i Adversary’s estimation of qi
p̂j Adversary’s estimation of pj
p̂ Adversary’s estimation of p

[x1,x2, · · · ,xρ] and UT
s
.
= [X1

s,X
2
s, · · · ,X

ρ
s ]. Since for any

i ∈ {1, · · · , Nusers}, r ∈ {1, · · · , ρ}, the sample Xr
s,i is not

observable, we construct its minimum mean-square predictor
x̂rs,i given the whole set of input observations U as

x̂rs,i = α

r−1∑
k=0

(1− α)kxr−ki + α(1− α)r−1m/Nusers (1)

where we have assumed that at the time the adversary starts
observing the system the pool contains m messages whose
sender is unknown, i.e., they may correspond to any of the
Nusers users with uniform probability. For implementation pur-
poses, a more convenient way of writing (1) is the following
recursive equation

x̂r+1
s,i = (1− α)x̂rs,i + αxr+1

i , r = 1, · · · , Nusers (2)

where x̂1s,i is initialized to x1i + m/Nusers. We will stack
the predicted values for round r into vector x̂rs

.
=

[x̂rs,1, · · · , x̂rs,Nusers
]T , and define Û

T

s
.
= [x̂1

s, x̂
2
s, · · · , x̂

ρ
s ].

In [11] we show that a Maximum Likelihood formulation
leads, after some simplifications, to the following estimate for
vector pT

.
= [pT1 , · · · ,pTNusers

]:

p̂ = arg min
p∈P
||y −Hp||2 , (3)



where P denotes the set of valid probability vectors,1 and
H

.
= INusers ⊗ Us, with ⊗ the Kronecker product and INusers

the identity matrix of size Nusers. Problem (3) is nothing but
a constrained Least Squares (LS) one. However, due to the
simplicity of the analysis and the fact that the estimator so
obtained is asymptotically efficient (i.e., p̂ → p, when ρ →
∞) we focus next on the unconstrained problem, for which
the LS estimate p̂j for the jth unnormalized receiver profile
can be decoupled from those of the other users and written as

p̂j = (Û
T

s Ûs)
−1Û

T

s yj , j = 1, · · · , Nusers .

The performance analysis of this estimator in the case of a
pool mix is carried out in Appendix A, where it is shown that
the MSE is

MSE .
=
∑Nusers
j=1 tr

(
E[(pj − p̂j)(pj − p̂j)

T ]
)

(4)

≈ Nusers(Nusers−1+αq/t)
ραq

− (Nusers−1)/(2−α)+1/t
ρ (5)

where αq
.
= α/(2− α). This approximation is asymptotically

tight as ρ→∞. Moreover, when α = 1 we recover the results
for the threshold mix in [12]. When Nusers is large, (5) can be
approximated as

MSE ≈ N2
users

ραq
(6)

Noticing that the threshold mix corresponds to αq = 1, we
can conclude that the pool mix requires (2 − α)/α times
more rounds for the adversary to achieve the same MSE. For
instance, for α = 0.5, three times more rounds are needed
to achieve the same MSE as in the threshold mix. Since
αq monotonically increases with α, the difficulty of learning
the profiles is always larger in the pool mix compared to
the threshold mix. Of course, this comes at the price of an
increased delay; the binomial nature of the mixing process
implies that the number of rounds messages stay in the pool
follow a geometric distribution with parameter α, and hence
the mean delay (measured in rounds) is (1− α)/α.

IV. EVALUATION

We evaluate the effectiveness of the LSDA approach against
synthetic anonymized traces created by a simulator writ-
ten in the Python language.2 comparing its results with
those obtained performing the Statistical Disclosure Attack
(SDA) [10], the only attack in the literature that has been
applied to pool mixes. The SDA estimates a users sender
profile by averaging the probability distributions describing the
recipient anonymity set [9] of her messages. In a nutshell the
sending probability pj,i is computed by counting in how many
rounds user j has been seen receiving a message weighted by
the probability that one (ore more) messages from user i leave
the pool at that round, and averaging the result.

We simulate a population of Nusers users with f contacts
each, to whom they send messages with equal probability (i.e.,

1Without further constraints, that may be furnished when there is partial
knowledge about the transition probabilities, P is simply given by the
constraints 0 ≤ pj,i ≤ 1 for all j, i, and

∑Nusers
j=1 pj,i = 1, for all i.

2The code will be made available upon request.

pj,i = 1/f if i is friends with j, zero otherwise). For the
sake of simplicity, we further fix that each receiver receives
messages from the same number of senders. In the first part
of the evaluation messages are anonymized using a threshold
binomial pool mix where each round t messages arrive to
the mix, and each message in the pool has a probability α of
leaving the mix; and later on we study other mixing strategies.
We consider that the adversary observes ρ rounds of mixing.
The parameters’ values used in our experiments, though rather
unrealistic, have been chosen such that experiments could be
carried out in reasonable time. We note, however, that the
LSDA’s results can be extrapolated to any set of parameters
as long as the proportion among them is preserved.

We define the Mean Squared Error per transition proba-
bility (MSEp) as the total MSE normalized by the number of
elements of vector p:

MSEp = MSE/N2
users.

The MSEp expresses the accuracy of the attack by measur-
ing the amount by which the output values p̂ output differ from
the actual value p to be estimated. The smaller the MSEp, the
better is the adversary’s estimation of the users’ actual profiles.
For each of the studied set of parameters we store the sets of
senders and receivers during ρ rounds and compute the MSEp
for both SDA and LSDA. We repeat this process 20 times and
plot the average of the results in our figures.

A. Results

We first evaluate the LSDA profiling performance, and
the accuracy of our error predictor, when messages are
anonymized using a threshold binomial pool mix. We recall
that in such mix arriving messages are stored on a pool, and
each round (i.e., when t messages are received) leave the mix
with probability α. Otherwise, messages stay on the pool until
the next round, when they are mixed with the arriving fresh
messages and again probabilistically selected to be fired or
not.

1) Performance with respect to delay: We recall that the
mean delay in rounds is (1−α)/α. Fig. 2, top, illustrates the
evolution of the LSDA’s error when α varies. We see that the
empirical error (represented by • in the figure) closely follows
the prediction given by (6). As expected, large delays (i.e.,
small values of α) increase the error. The longer the delay,
the more messages participate in the mixing, hindering the
estimation of the sending probabilities.

Surprisingly, it seems that the SDA’s MSEp is independent
from the pool mix firing probability α, and that moreover
it outperforms the LSDA when the delay is large. A closer
look at the estimated profiles reveals that actually the SDA’s
output resembles noise with mean 1/Nusers (see Fig. 3). Only
when the delay is minimal, i.e., when α → 1, and hence
messages are rarely mixed with messages from other rounds,
actual friends are assigned the largest probabilities in the
estimated profile. When the firing probability is set to α = 0.9
(ρ = 10 000) the LSDA and SDA perform similarly, correctly
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identifying 93% and 91% of the users’ friends, respectively.
However, when α = 0.1 the LSDA correctly identifies 47%
of the users’ friends, while the SDA only uncovers 37%.

2) Performance with respect to the number of rounds ρ:
Fig. 2, bottom, shows the evolution of the MSEp with the
number of rounds for two firing probabilities: α = 0.5, and
α = 0.9 (black and grey lines, respectively). As predicted
by (6), observing more rounds decreases significantly the
LSDA’s error. Nevertheless, the SDA’s naive approach takes
little advantage of the information procured by additional
observations, and its output error remains virtually constant
as the number of rounds grows. Looking at the number of
correctly identified friends we find that for α = 0.1 the LSDA
correctly identifies 47% of the users’ friends when 10 000
rounds are observed, and 75% when ρ is increased to 100 000.
The SDA’s performance in identifying friends, however, only

improves from 37% to 55%.
3) Comparison between pool mixing strategies: So far we

have tested the performance of the LSDA against threshold
binomial pool mixes (denoted as “BIN”), that receive a con-
stant number of messages, and fire a variable fraction of the
messages in the pool. The attack is, however, not limited to
such strategy. In this section we adapt the attack to other pool
mixing strategies in order to illustrate its flexibility.

First, we consider a timed binomial pool mix (denoted
as “TIME”) that fires at regular intervals instead of upon
the reception of t messages. Hence, not only the number of
messages fired every round is variable, but also the number of
arrivals. This can be easily encoded in the LSDA’s formulation,
as the only difference with respect to the attack described in
Sect. III is that the observation vectors xr do not necessarily
sum up to t but may add up to a variable number (depending
on the number of arrivals in a given round).

We also study a threshold pool mix in which a fixed fraction
α of messages from the pool are fired every round (denoted
as “%”). Hence both the number of messages arriving and
leaving the mix in every round is constant (and equal to t).
Adapting the LSDA to this pool mix requires us to compute
the probability that a given message leaves the mix in a round.
Let us denote as m the number of messages in the pool at the
beginning of round r from which Sri belong to sender i. At the
time of firing (when t new messages have entered the mix),
the number of messages from the ith sender leaving the mix
follow a hypergeometric distribution: t messages are selected
from a total number of m + t (out of which Sri + xri belong
to sender i). Hence the average number of messages from the
ith sender leaving the mix is

E

{
t(xri + Sri )

(m+ t)

}
=

txri
(m+ t)

+
tE{Sri }
(m+ t)

.
= wri . (7)

The first summand in the right hand side can be directly
computed by the adversary; the second summand can be
obtained recursively: the average number of messages from
sender i remaining in the pool for round r+1 is E{Sr+1

i } =
E{Sri } + xri − wri , that is, the average number of initial
messages minus the average number of those leaving the pool.
In fact, it can be seen that the attack on the “%” mix can be
implemented by putting t/(m+ t) in place of α in Eq. (1).

We show in Fig. 4, box plots representing the distribution
of the MSEp for the different mixing strategies depending
on α (top) and on ρ (bottom). The parameters used in our
experiments ensure that the mean number of arrivals, as well
as the mean delay suffered by messages, is the same for the
three mixes. The bottom figure reinforces our claim that the
number of rounds has a dominant role on the profiling error,
that decreases with the number of observations.

The top figure better illustrates the differences between the
mixes. When α is small (i.e., there is good mixing among mes-
sages from subsequent rounds) the timed pool mix outperforms
the other approaches. We conjecture that the variability at the
entry and exit of the timed pool mix increase the uncertainty
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of the adversary about the correspondence between input and
output messages, increasing her error. The effect is opposite
when α grows and messages often enter and leave the mix in
the same round resembling the behavior of a threshold mix. In
this case the variability would benefit the adversary that is able
to infer a lot of information from rounds where few messages
enter the mix. The LSDA obtains similar results against the
binomial and percentage mixes, being slightly more effective
when attacking the latter as there is less variation at the output
of the mix than in the former.

4) Constrained profile estimation: The solution above ap-
proaches user profiling as an unconstrained problem which
causes some of the estimated probabilities p̂j,i to be negative
(see Fig. 3). One can reduce the error by just setting those
probabilities to zero, as we see in Fig. 5 where ZLSDA denotes
this attack. Nevertheless, zeroing negative probabilities in such
a straightforward manner disregards that profiles are well-
defined probability distributions and hence

∑
j pj,i = 1. The

error can be further reduced by establishing constraints on
Eq. (3) to ensure that the profiles recovered by the LSDA are
well-defined. Such a solution can be found in [12].

V. CONCLUSION

We have studied the applicability of the Least Squares
Disclosure Attack [11], [12] to pool mixes. Our empirical

evaluation confirms that our formulas describing the error of
the attack against a threshold binomial pool mix closely model
reality. Furthermore, the LSDA outperforms the Statistical Dis-
closure Attack [10], the only attack in the literature adapted to
these mixes. We have shown that the Least Squares approach
is not limited to the analysis of these particular mixes, but
can be adapted to account for other mixing strategies. The
derivation of analytical results for mixing strategies other than
the threshold binomial pool mix is left as subject for future
work.

APPENDIX

Derivation of MSE for the pool mix. We will use the
following result, which is proven in [11]. Let M be an arbitrary
matrix of size ρ × ρ, and UT .

= [X1,X2, · · · ,Xρ], where
the vectors Xr, r = 1, · · ·Nusers, are independent and each
follows a multinomial distribution with t trials and uniform
probabilities px

.
= 1/Nusers. Then, for large ρ

UTMU ≈ tr(M)tpxINusers

+
(
sum(M)t2p2x − tr(M)tp2x

)
1Nusers×Nusers (8)

where tr(M) stands for the trace of M and sum(M) is the
summation of all the elements of M.

For compactness in the subsequent derivations, we will find
it useful to define the following convolution matrix

B
.
=


α 0 0 · · · 0

α(1− α) α 0 · · · 0
α(1− α)2 α(1− α) α · · · 0

...
...

... · · ·
...

α(1− α)ρ−1 α(1− α)ρ−2 α(1− α)ρ−3 · · · α


(9)

Then, the predictor in (1) can be also written as

Ûs = B(U + N0) (10)

where the matrix N0, which accounts for the average initial
state of the mix, is such that all entries in the first row take
the value m/Nusers, while all the remaining elements are zero.
Notice that for the standard threshold mix, which corresponds
to α = 1, m = 0, we have that B = Iρ, N0 = 0.

We can start now to derive an expression for the MSE.
From (4) we can write the MSE as the sum of the traces of the
covariance matrix for the estimated profile error corresponding
to each user. Thus, we focus on such covariance matrix, which
for the jth user becomes

E[(pj−p̂j)(pj−p̂j)
T ] = (R̂xs)

−1Û
T

s ΣyjÛs(R̂xs)
−1 (11)

where

R̂xs
.
= Û

T

s Ûs = (UT + NT
0 )B

TB(U + N0) (12)

is an estimate of the correlation matrix of x̂rs.
First, we compute the covariance matrix Σyj of Yj , whose

entries are Cov{Y rj , Y lj }, for all r, l = 1, · · · , ρ. Under the as-
sumption that each sender and receiver have exactly f friends,
we can see Y rj as the sum of r independent binomial processes



with t trials and probabilities pxα(1−α)k, k = 0, · · · , r− 1.
Then,

Cov{Y rj , Y lj } = −tp2xα2
r−1∑
m=0

l−1∑
k=0

(1− α)m(1− α)k, r 6= l

Var{Y rj } = tpxα

r−1∑
m=0

(1− α)m − tp2xα2
r−1∑
m=0

(1− α)2m

Thus, for large ρ we can write

Σyj ≈ tpxIρ − tp2xBBT (13)

We also need to write the estimated correlation matrix R̂xs

in a way that does not depend on the particular input. We will
assume that N0 = 0, as the impact of the initial conditions
can be neglected for a large number of rounds. Therefore,
R̂xs = UTBTBU, so from the result at the beginning of the
Appendix we need to obtain tr(BTB) and sum(BTB). For
large ρ and neglecting border effects we have

tr(BTB) ≈ ρ(bk ∗ b−k)|k=0; sum(BTB) ≈ ρ
∞∑

k=−∞

bk ∗ b−k

(14)
where ∗ denotes convolution, and bk

.
= α(1−α)kuk, with uk

the unit-step function. From the definition, we find that

bk ∗ b−k =
α

2− α
(1− α)|k| (15)

from which it follows that tr(BTB) = ρα/(2 − α)
.
= ραq

and sum(BTB) = ρ. Then, we can write R̂xs = dxsINusers +
cxs1Nusers×Nusers , where

cxs
.
= ρtp2x(t− αq); dxs

.
= ραqtpx (16)

From the structure of R̂xs it is possible to write

R̂
−1
xs = d−1xs (INusers − θ1Nusers×Nusers) (17)

R̂
−2
xs = d−2xs

(
INusers − (2θ −Nusersθ

2)1Nusers×Nusers

)
(18)

where θ .
= px(1− αq/t).

With the previous derivations, the trace of (11) can be
expanded as follows

tr(R̂
−1
xs UTBTΣyjBUR̂

−1
xs ) = tpxtr(R̂

−1
xs )

− tp2xtr(UT (BTB)2UR̂
−2
xs )

The first summand can be obtained from (17) since

tr(R̂
−1
xs ) = Nusersd

−1
xs −Nusersθ =

Nusers

ρtαq
(Nusers − 1 + αq/t)

(19)
For the second summand we use (18) together with the

result at the beginning of this appendix to show

UT (BTB)2UR̂
−2
xs = d−2xs tr((BTB)2)tpxINusers + d−2xs tp

2
x

·
(

sum((BTB)2t(1−Nusersθ)
2 − tr((BTB)2)

)
1Nusers×Nusers

Following the same reasoning as above, for large ρ we can
show that

tr((BTB)2) =
ρα

(2− α)3
; sum((BTB)2) = ρ (20)

Hence

tr(UT (BTB)2UR̂
−2
xs ) ≈ d−2xs Nusersρtpx

·
(

α

(2− α)3
(1− px) + α2

qpx

)
Combining all the previous results we obtain (5).
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